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ABSTRACT  
  

Clinical variables and biosignals can potentially be identified during the assessment, screening, and diagnostic characterization of 
neurogenic oropharyngeal dysphagia (NOD). This study aimed to develop an integration model to distinguish healthy individuals from 
patients with NOD by combining clinical variables with features extracted from surface electromyography (sEMG), laryngeal 
accelerometry (LA), and voice signals. These signals were recorded before and after swallowing different consistencies and volumes 
of food. A case-control study was conducted, including 80 healthy individuals and 86 patients diagnosed with NOD, and 158 clinical 
variables and 5,080 non-invasive swallowing-related signal features were collected. After dimensionality reduction, the data were 
integrated using logistic regression models. Statistically significant differences were found in 88 clinical variables, 36 latent variables 
from sEMG, 72 combined features from sEMG and LA, and 61 from voice signals. The final model included five clinical and four 
biosignal variables: two background variables, three findings from the physical examination, one sEMG feature from the infrahyoid 
region during water swallowing, one LA feature in the mediolateral axis during yogurt swallowing, and two voice subfeatures 
reflecting changes observed during continuous articulation and sustained phonation of the vowel “a.” Together, these variables 
explained 90.6% of the variance in classifying individuals as NOD patients. The integration of computational swallowing 
methodologies using non-invasive signal processing with clinical variables may enhance screening and supplement gold-standard 
diagnostic tools in oropharyngeal dysphagia. 
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Modelo de integración entre variables clínicas y bioseñales de deglución 
computacional en disfagia orofaríngea neurogénica 

 

  
RESUMEN  
  

En la disfagia orofaríngea neurogénica (DON) existen variables clínicas y bioseñales potencialmente identificables durante su 
evaluación, tamizaje y caracterización diagnóstica. Este estudio desarrolló un modelo para diferenciar personas sanas de pacientes con 
DON mediante la integración de variables clínicas con características extraídas de señales de electromiografía de superficie (sEMG), 
acelerometría laríngea (AC) y voz, registradas antes y después de la deglución de distintas consistencias y volúmenes. Se diseñó un 
estudio de casos y controles que incluyó 80 personas sanas y 86 con diagnóstico de DON. Se recolectaron 158 variables clínicas y 
5.080 variables derivadas de señales no invasivas asociadas a la deglución. Tras una reducción de variables, los datos fueron integrados 
mediante modelos de regresión logística. Se identificaron 88 variables clínicas con diferencias estadísticamente significativas, junto 
con 36 variables latentes de sEMG, 72 combinadas de sEMG y AC laríngea, y 61 de señales de voz. El modelo final integró cinco 
variables clínicas y cuatro características de las bioseñales: dos antecedentes, tres hallazgos al examen físico, una característica de 
sEMG en la región infrahioidea al deglutir agua, una característica de AC laríngea en el eje medio-lateral al deglutir yogur, y dos 
cambios en subcaracterísticas de la voz observados en articulación continua y en la fonación de la vocal “a”. Estas variables explican 
el 90,6% del fenómeno de ser paciente con DON. La integración de metodologías de deglución computacional con variables clínicas 
podría mejorar el tamizaje y complementar las pruebas de referencia en disfagia orofaríngea. 
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INTRODUCTION 

Dysphagia is a swallowing disorder (Sejdic et al., 2019) that 
results from dysfunction in one or more of the phases of the 
swallowing mechanism—namely, the anticipatory (pre-oral) 
phase, oral preparatory phase, oral propulsive phase, pharyngeal 
phase, and esophageal phase. This disorder compromises both the 
safety and efficiency of swallowing, as well as the person’s 
nutritional and respiratory status and overall quality of life 
(McCarty & Chao, 2021). Clinically, dysphagia is classified into 
oropharyngeal dysphagia (difficulty initiating swallowing) and 
esophageal dysphagia (sensation of food stuck in the esophagus) 
(Hurtte et al., 2023). Etiologically, we can find structural, motor, 
and functional causes (Suárez-Escudero et al., 2022). Structural 
causes involve conditions that narrow the oral, pharyngeal, or 
esophageal lumen; motor causes disrupt peristalsis and relaxation 
of the esophageal sphincter; and functional causes refer to 
impairments in the physiological processes of swallowing, 
including neurological control and neuromuscular coordination 
(Suárez-Escudero et al., 2022). 

Although dysphagia may be a symptom of a systemic disease, its 
most common etiology is neurological (Altman et al., 2013). One 
of the most prevalent forms is neurogenic oropharyngeal 
dysphagia (NOD) (Suárez-Escudero et al., 2022), a functional 
disorder frequently associated with pulmonary and nutritional 
complications (Gallegos et al., 2017). Oropharyngeal dysphagia 
has been reported in 30% to 82% of patients with neurological and 
neurodegenerative diseases (Terré-Boliart et al., 2004), and its 
severity can range from mild to severe (Ciucci et al., 2019). 

Dysphagia is a heterogeneous and complex multi-etiological 
syndrome with diverse phenotypic patterns depending on the 
underlying neurological disease (Warnecke et al., 2021), which is 
especially true in the case of NOD. It is commonly associated with 
a range of symptoms and signs that can be identified through 
formal screening and diagnostic tools, such as the Eating 
Assessment Tool-10 (EAT-10) (Zhang et al., 2023) and Clinical 
Swallowing Evaluation (CSE) (Cook, 2008; O’Horo et al., 2015). 
These tools allow for the clinical classification of dysphagia 
(oropharyngeal vs. esophageal) and aid in identifying potential 
etiologies. However, they fail to accurately and precisely 
characterize the presence or absence of specific subtypes, such as 
NOD. 

In addition to clinical characteristics, such as symptoms and signs 
identified through medical history and physical examination, 
patients with NOD generate biosignals that can be recorded and 
analyzed using sensors during the swallowing of different 

volumes and consistencies. These biosignals hold significant 
clinical potential and can be captured using various technologies. 
Surface electromyography (sEMG) is a widely used method in 
which several electrodes are placed on the neck region to assess 
muscle activity during swallowing in both healthy individuals and 
those with dysphagia. Several studies have validated this 
technique (Hsu et al., 2013; Koyama et al., 2021; Vaiman et al., 
2009). Another relevant technology is laryngeal accelerometry, 
which tracks the movement of the hyoid and detects dysphagia 
through sensors placed externally (Mao et al., 2019; Zoratto et al., 
2010). 

Additionally, voice quality analysis has been employed to assess 
changes associated with dysphagia (Waito et al., 2011). Phonetic 
test batteries, including assessments of lip, tongue, and jaw 
diadochokinesis, help predict dysphagia and detect aspiration in 
patients in intensive care units (Festic et al., 2016). These 
biosignals enable clinicians to examine both the 
electrophysiological and mechanical aspects of swallowing. 
However, to date, these techniques have been primarily used in 
isolation, following unimodal approaches. Integrating these tools 
under multimodal frameworks could significantly improve the 
detection and characterization of dysphagia, including NOD, by 
combining multiple sources of information to provide a more 
precise and comprehensive assessment (Roldan-Vasco, Orozco-
Duque, et al., 2023). 

The aforementioned underscores the need to develop new 
approaches to improve screening and diagnostic characterization 
processes. In recent years, advances have been made in signal and 
image processing algorithms, which are now used as methods for 
studying swallowing and supporting the diagnostic process. This 
approach, known as computational deglutition, has emerged as a 
translational subfield at the intersection of medicine, engineering, 
and signal/image processing (Sejdic et al., 2019). 

Recent studies have explored the combination of biosignals in 
swallowing analysis. Examples include the integration of 
submental mechanomyography, nasal airflow, and biaxial 
cervical accelerometry (Lee et al., 2009); electromyography and 
bioimpedance (Schultheiss et al., 2014); and videofluoroscopy 
combined with high-resolution cervical auscultation (Donohue 
et al., 2021). Another study using multimodal analysis—
combining sEMG signals from suprahyoid and infrahyoid regions 
with cervical auscultation based on triaxial accelerometry—
showed that this integration improves the performance of 
automated classification models for dysphagia detection (Roldan-
Vasco, Restrepo-Uribe, et al., 2023). Other research has 
combined sets of clinical variables to predict acute dysphagia 
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following radiotherapy (De Ruyck et al., 2013) and aspiration in 
oropharyngeal dysphagia (Heijnen et al., 2020). Moreover, a 
recent study proposed a model based solely on clinical 
variables—accessible through patient history and swallowing 
examination—that partially explains the presence of NOD 
(Escudero et al., 2024). 

It is, therefore, plausible to consider that integrating clinical 
variables extracted from multiple groups of biosignals could help 
explain, identify, and classify patients with NOD. Combining 
these data may lead to models that support and complement the 
screening and diagnostic processes carried out by healthcare 
professionals. However, to date, no studies have integrated 
biosignals derived from computational deglutition analysis with 
clinical variables observed in patients with NOD. 

This study aimed to develop an algorithm-based explanatory 
model capable of distinguishing between healthy individuals and 
patients with NOD by integrating clinical variables with features 
extracted from sEMG signals, laryngeal accelerometry, and voice 
quality before and after swallowing various volumes and 
consistencies. 

 

METHOD 

A case-control study was conducted using data from clinical 
assessments and non-invasive swallowing signals. The control 
group consisted of people without dysphagia or any neurological 
or neuromuscular comorbidities. In contrast, the case group was 
composed of patients diagnosed with neurogenic oropharyngeal 
dysphagia (NOD). 

Participants 

Sample size estimation was performed using Epidat®, yielding a 
total of 76 participants in the case group and 76 in the control 
group. The calculation was based on a sensitivity of 80%, as 
reported in the literature for the Clinical Swallowing Evaluation 
(CSE) (Cook, 2008), with a statistical power of 80% and a 95% 

confidence level. It was projected that the new clinical algorithm 
would increase sensitivity by 15% (expected sensitivity of 95%) 
compared to the CSE alone, while maintaining 80% power and a 
95% confidence level. 

Participants in the case group were recruited from 12 private 
speech-language therapy practices specializing in swallowing 
disorders, 10 healthcare institutions (IPS) offering dysphagia 
services, four long-term care facilities for older adults, and three 
patient foundations located in the Valle de Aburrá and San 
Nicolás regions of Antioquia, Colombia. 

Participants without dysphagia (control group) were recruited 
from two senior community centers, two universities, and one 
neighborhood community board (Junta de Acción Comunal) 
located in the Valle de Aburrá (Medellín), as well as from healthy 
relatives of patients. Table 1 details the eligibility criteria for cases 
and controls. 

A neurologist with clinical expertise in NOD assessed the 
eligibility of the case group, supported by a speech-language 
therapist trained in swallowing and dysphagia. On the other hand, 
a physician specialized in neurological rehabilitation with training 
in swallowing and dysphagia determined eligibility for the control 
group. The study was conducted from the first semester of 2019 
to the first semester of 2022. 

The research team assessed 288 individuals between March 2019 
and December 2021, comprising 103 (35.7%) healthy controls 
and 185 (64.3%) with oropharyngeal dysphagia. The final sample 
consisted of 166 participants: 80 controls and 86 NOD cases (see 
Figure 1), all of whom underwent the CSE and three non-invasive 
biosignal protocols. 

Among the NOD cases, 59.3% (51/86) were male, whereas 53.8% 
(43/80) of the controls were female. The median age in both 
groups was 61 years. In the case group, the etiology was primarily 
central neurological causes (88.4%, 76/86), followed by 
neuromuscular causes (11.6%, 10/86). 
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Table 1. Eligibility criteria for cases and controls. 

Eligibility Criteria Controls Cases 
Inclusion Criteria Age ≥18, both sexes; no dysphagia or central, 

peripherical, or neuromuscular neurological 
diseases. 
Total score in the Eating Assessment Tool <3 
Points. 
No comorbidities like head and neck cancer, 
COPD, or surgical procedures in the 2/3 lower 
part of the face or neck, no use of botulinum 
toxin. 

Age ≥18, both sexes; presence of neurogenic oropharyngeal 
dysphagia of at least one month in duration. 
Diagnosis of central neurological or neuromuscular pathologies 
that, in their progress, have resulted in oropharyngeal dysphagia. 
Total score in the Eating Assessment Tool ≥3 points (Giraldo-
Cadavid et al., 2016). 
Symptoms like coughing, a sensation of food being stuck in the 
throat, a choking sensation related to swallowing food, and/or 
voice changes when swallowing, as well as difficulty initiating 
swallowing or the need for multiple swallows to ingest food, as 
observed during physical examination. 

Exclusion Criteria Undergoing active endodontic procedures; 
presence of congenital malformations in the 
oral cavity, tongue, and neck; diagnosis of 
Sjögren's disease and cognitive impairment. 

Exclusively esophageal dysphagia, mechanical, propulsion-related, 
or iatrogenic dysphagia; irradiated skin in the facial and/or cervical 
region; edema or hematoma in the orofacial and cervical area that 
prevents sensor placement; recent surgical dissection (<3 months) 
on the neck skin; severe hypoxemia (ambient oxygen saturation 
<80% unresponsive to oxygen therapy); deep brain stimulation 
implants; advanced-stage dementia that prevents understanding of 
simple commands for chewing and swallowing; presence of 
congenital structural malformations in the oral cavity, tongue, or 
neck; diagnosis of Sjögren's disease; and undergoing active 
endodontic procedures. 

 

 
Figure 1. Flowchart of the recruitment and selection process for cases and controls. 
 

Healthy People Assessed
N=103

Healthy People Excluded =23
5 with incomplete voice signal protocol

4 with chronic obstructive pulmonary disease
4 with mechanical dysphagia

3 with central nervous system disease
3 without recorded voice signals
2 with neuromuscular disease

2 with errors in signal recording and storage

Sample of healthy people with clinical 
assessment + signal recording: N=80

People Contacted
Identified Candidates N=185

It was not possible to schedule an intake assessment for 93 of the 
candidates due to difficulties with transportation, hospitalization, 
lack of a relative to accompany them, or voluntary decision not to 

participate. 

People Assessed N=107

People excluded N=21
4 without an etiological diagnosis of dysphagia.

4 with errors in synchronous recording and signal storage.
3 without neurogenic oropharyngeal dysphagia, based on clinical 

evaluation and diagnostic methods.
3 with an Eating Assessment Tool-10 (EAT-10) score ≤ 2.

3 with advanced-stage dementia and no comprehension of simple 
commands.

2 with deep brain stimulators.
2 with severe hypoxia.

Sample of patients with neurogenic 
oropharyngeal dysphagia with 
clinical assessment + signal 

recording: N=86
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Description of Instruments and Procedures 

Both groups were assessed using a standardized protocol to ensure 
data comparability. The Eating Assessment Tool (EAT-10) was 
used to detect dysphagia. Additionally, a CSE protocol was 
implemented to collect clinical variables that could be integrated 
with features extracted from non-invasive swallowing signals to 
create an explanatory model for NOD. The signals were 
subsequently recorded to identify biomarkers to characterize and 
analyze the swallowing function and incorporate them into the 
model. 

Eating Assessment Tool (EAT-10): This instrument was used for 
sample selection. It was chosen due to its validation in Colombia 
and its strong balance between sensitivity and specificity 
(Giraldo-Cadavid et al., 2016). A cutoff score of ≥3 points was 
considered to indicate the presence of dysphagia. 

CSE: This protocol includes a medical history focused on 
swallowing characteristics and dysphagia symptoms. 
Additionally, information was gathered on medications that could 
affect swallowing (e.g., neuroleptics, barbiturates, anxiolytics, 
non-steroidal anti-inflammatory drugs, muscle relaxants, 
anticholinergics, and tricyclic antidepressants). A physical 
examination was conducted to assess the oral cavity, respiratory 
system, lower cranial nerves (including the trigeminal and facial 
nerves), orofacial movement, and pulmonary auscultation. 
Furthermore, an evaluation of the anatomy, function, sensitivity, 
and reflexes of the swallowing mechanism was performed, with 
an emphasis on the oral and pharyngeal phases (Ricci Maccarini 
et al., 2007). Height, weight, and oxygen saturation were also 
recorded. Variables extracted from the CSE were grouped into the 
following categories: (1) sociodemographic characteristics and 
medical history, (2) swallowing characteristics, (3) dysphagia 
symptoms, and (4) findings from the physical examination. 

Non-invasive Swallowing Signal Recording: This was performed 
after the CSE. Biosignals from surface electromyography 
(sEMG), cervical accelerometry (CA), and voice were collected 
and selected for their capacity to assess the electrophysiological, 
kinematic, and phonatory dimensions of swallowing, 
respectively. 

Surface electromyography signals were chosen because they 
provide data on the electrophysiological aspects of swallowing by 
capturing neuromuscular activity from muscle groups involved in 
the oral and pharyngeal phases (e.g., lip, masseter, supra- and 

infrahyoid regions) (Roldan-Vasco, Orozco-Duque, et al., 2023; 
Roldan-Vasco, Restrepo-Uribe, et al., 2023). 

It is noteworthy that our research team had previously validated 
these biosignals (Roldan-Vasco et al., 2018, 2021; Roldan-Vasco, 
Orozco-Duque, et al., 2023; Roldan-Vasco, Restrepo-Uribe, 
et al., 2023). This procedure aimed to obtain recordings of these 
signals both before and after swallowing in participants from both 
groups. 

To this end, three non-invasive biosignal detection and recording 
protocols were used while participants performed swallowing 
tasks with different food consistencies at sub-therapeutic 
volumes. Sub-therapeutic volumes were used as a safety measure, 
particularly for patients with NOD. 

The three protocols are presented below: 

Protocol 1: Surface electromyography (sEMG) signals were 
recorded from four muscle groups using electrodes designed to 
capture signals synchronously. The muscle regions included (a) 
orbicularis oris, (b) bilateral masseter, (c) bilateral suprahyoid, 
and (d) bilateral infrahyoid (Figure 2a). The sEMG signals were 
acquired using a Noraxon Ultium™ electromyograph with 
disposable silver/silver chloride (Ag/AgCl) electrodes (20 mm 
diameter, integrated gel), a sampling rate of 2 kHz, and a band-
pass filter with cutoff frequencies between 10 and 500 Hz. 

Following the setup of Protocol 1, an oral motor test was 
performed using specific volumes and consistencies in the 
following sequence: 5 mL of yogurt, pause; 10 mL of yogurt, 
pause; 20 mL of yogurt, pause (thick milk-based yogurt without 
fruit pieces); 3 grams of plain salted cracker, pause; saliva 
swallow, pause (after evaluating the risk of adverse events prior 
to administering water); 5 mL of water, pause; 10 mL of water, 
pause; and finally, 20 mL of water. 

This sequence was adapted from the protocol by Sampaio et al. 
(2014), with reduced volumes (from 50 mL to 35 mL) as a safety 
measure. Our research group had validated and used the adjusted 
protocol in prior studies (Escudero et al., 2024; Roldan-Vasco, 
Orozco-Duque, et al., 2023; Roldan-Vasco, Restrepo-Uribe, 
et al., 2023). They included different consistencies because the 
physiological process of swallowing varies between solid (e.g., 
crackers) and liquid substances (e.g., water, yogurt, and saliva) 
(Matsuo & Palmer, 2008). During the swallowing of each 
consistency and volume, the signals were recorded digitally 
through sEMG, CA, or both. 
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Figure 2. Electrode placement and positioning for protocols 1 and 2. 
2a (Protocol 1): Electrodes were placed in four muscle regions: orbicularis oris, bilateral masseter, bilateral suprahyoid, and bilateral infrahyoid. 
2b (Protocol 2): Electrodes were placed in the bilateral suprahyoid region and the right infrahyoid region, following the same anatomical references described for protocol 
1. Additionally, a triaxial accelerometry unit was positioned in the anterior cervical region, on the skin overlying the larynx, using the space between the thyroid and 
cricoid cartilages as a reference. 

 
 

 

Figure 3. Sequence of the three protocols used to record the signals 
OB: orbicularis oris region. RM: Right masseter region. LM: left masseter region. RSH: right suprahyoid region. LSH: left suprahyoid region. RIH: Right infrahyoid 
region. LIH: left infrahyoid region. AC: laryngeal accelerometry unit. 

 

Protocol 2: This protocol involved recording sEMG signals from 
three of the four muscle groups analyzed in Protocol 1, aiming to 
detect neuromuscular activation (electrophysiological 
dimension). Simultaneously, a kinematic recording was 
performed using cervical accelerometry (CA) to capture 
displacements that occur during the pharyngeal phase of 
swallowing (mechanical dimension) (Roldan-Vasco, Restrepo-
Uribe et al., 2023). Electrodes were positioned bilaterally over the 
suprahyoid region and on the right side of the infrahyoid region. 
Additionally, a triaxial analog accelerometer (MMA7362) was 

placed on the anterior cervical region, aligned with the larynx 
(Figure 2b).  

The sEMG signal was obtained using the same equipment as in 
Protocol 1. The CA signal was captured using a triaxial analog 
accelerometer (MMA7362) designed to detect laryngeal 
movement. The accelerometer was connected to a NI-USB 6515 
DAQ data acquisition board, which had a 10 kHz sampling rate 
and a band-pass filter with cutoff frequencies set at 0.1 kHz and 3 
kHz. The three CA channels captured data along the anterior-
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posterior (AP), superior-inferior (SI), and medial-lateral (ML) 
axes. 

Once sensor placement for Protocol 2 was completed, we repeated 
the oral motor test described in Protocol 1. 

Protocol 3: This consisted of digital voice recording using a 
Logitech H390 headset microphone and the Audacity software 
(Muse Group, 2021). Voice recordings were taken both before 
and after the oral motor test carried out in Protocols 1 and 2. 
Participants were asked to produce specific phonemes, words, and 
pre-designed sentences. Voice recordings help analyze speech-
related dimensions (such as phonation, articulation, and prosody), 
given that swallowing and speech share common anatomical 
structures and neurological networks (Roldan-Vasco et al., 2021). 

Figure 3 illustrates the protocol sequence and the position of the 
oral motor test within the signal recording process. 

Data Processing 

The sEMG and CA signal analysis began with noise removal 
using a method previously developed and reported by our research 
team (Sebastian et al., 2020). Subsequently, features in both time 
and frequency domains were extracted using a sliding window 
technique. This method generates a vector for each function and 
acquisition channel. The mean, standard deviation, skewness, 
kurtosis, and minimum and maximum values were then computed 
for each vector. This process aimed to scale each feature, resulting 
in a single data point per channel and feature. The sliding window 
size for both CA and sEMG signals was experimentally defined 
between 100 ms and 250 ms, with a 50% overlap between 
consecutive windows. Detailed signal processing procedures have 
been previously published (Roldan-Vasco, Restrepo-Uribe, et al., 
2023). 

For voice signals, preprocessing included data normalization 
using Sound eXchange (bitrate: 13 bps, downsampling: 8 kHz, 
band-pass filter between 0.2 kHz and 3.4 kHz). Subsequently, 
various speech-related features were extracted using Python and 
the Parselmouth library. The specifics of this processing are 
available in previously published work (Flórez-Gómez et al., 
2022). 

Data Analysis 

Firstly, a descriptive analysis of the assessed variables was 
conducted, using the Shapiro–Wilk test to verify the normality of 
quantitative variables. Exploratory odds ratios (OR) were 
calculated with 95% confidence intervals. Then, a bivariate 

analysis was performed on clinical variables and the signals 
obtained from the three protocols. 

Chi-square tests or Fisher's exact test were applied for qualitative 
variables. For quantitative signals, specific tests were selected 
based on data distribution; the Mann–Whitney U test was used for 
non-normally distributed variables. At the same time, Student's or 
Welch's t-tests were applied to normally distributed variables after 
testing for homogeneity with Levene's test (Protocols 1 and 2). 
Variables in Protocol 3 were analyzed using paired samples 
through the Wilcoxon test (for non-normal distributions) or 
Student t-test (for normal distributions). Variables with 
statistically significant differences (p < 0.005) were retained as a 
criterion for dimensionality reduction. 

Significant variables were then subjected to Principal Component 
Analysis (PCA) as a data reduction method, with varimax rotation 
applied. The number of components was determined based on 
eigenvalues, supported by sphericity testing (Bartlett's test, p < 
0.001), and sampling adequacy was evaluated using the Kaiser–
Meyer–Olkin test (KMO ≥ 0.800 indicating good to excellent 
adequacy). Latent variables with correlations ≥ 0.8 within 
components were selected. 

Binary logistic regression models were then constructed to 
classify cases (patients with NOD) and controls (healthy 
individuals). The parameters used for model construction 
included: a) Dependent variable: case/control status (reference 
category: healthy), b) Covariates: latent variables derived from 
signal data and qualitative clinical variables, c) Collinearity: 
assessed through the variance inflation factor (VIF), with ideal 
values between 1 and 3, 

d) Model fit: evaluated using the Akaike Information Criterion 
(AIC), e) Model explanatory power: assessed via Nagelkerke’s R² 
(R²N), and f) OR estimation: reported with 95% confidence 
intervals. 

Three independent models were developed, one for each protocol 
(sEMG, laryngeal CA, and voice), incorporating the clinical 
variables with statistically significant differences (p < 0.005) and 
the reduced latent variables from each protocol. Finally, the most 
relevant variables were integrated into a global model designed to 
discriminate between healthy individuals and those with NOD. 
Statistical analysis was performed using Jamovi® software, 
version 2.2 (The Jamovi Project, 2022).  

The study was approved by the Health Research Ethics 
Committee of Universidad Pontificia Bolivariana (Act No. 7, June 
1, 2017), the Ethics Committee of Fundación Hospitalaria San 
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Vicente Paúl (Act No. 35-2018, December 21, 2018), and the 
Ethics Committee of Clínica Somer (Act No. 01-2019, February 
8, 2019). Written informed consent was obtained from all 
participants. 

 

RESULTS 

Four major sets of variables were obtained for both groups: 158 
clinical variables derived from the CSE (25 sociodemographic 
and background characteristics, 38 swallowing features and 
dysphagia symptoms, 48 physical examination findings, and 47 
clinical findings from the oral motor tests using different 
consistencies and volumes); 2,464 quantitative variables from 
Protocol 1 (eleven features extracted from sEMG signals across 
muscle groups, consistencies, and volumes); 1,491 quantitative 
variables from Protocol 2 (eight features from sEMG signals and 
two from CA); and 1,125 paired variables from Protocol 3 (five 
grouped vocal features subdivided into 19 sub characteristics, 
assessed before and after swallowing different consistencies and 
volumes). 

When comparing cases and controls, 88 out of the 158 clinical 
variables (55.7%) showed statistically significant differences (p < 
0.005) and were included in the construction of the logistic 
regression model (see Supplementary Table S1). Figure 4 
summarizes the process of identifying, reducing, and distributing 
the clinical variables. 

In Protocol 1, 39.2% (966/2,464) of the quantitative variables 
exhibited statistically significant differences between groups (p < 
0.05). Based on this outcome, 44 PCA models were developed 
and organized in blocks according to the extracted features and 
statistical properties. This dimensionality reduction process 
yielded 36 latent variables (from 966 significant variables) 
representative of the main sEMG signal dimensions. The latent 
sEMG variables from Protocol 1, along with their 
characterization, are provided in Supplementary Table S2. 

In Protocol 2, 53.9% (804/1,491) of the quantitative variables 
showed significant differences between cases and controls. To 
reduce this set, 39 PCA models were implemented, structured by 
extracted features, statistical parameters, and sensor type (sEMG 
or laryngeal CA). This procedure reduced the 804 significant 
variables to 143 latent variables: 50.3% (72/143) derived from CA 
signals and 49.7% (71/143) from sEMG signals. The latent 
variables for laryngeal CA and sEMG from Protocol 2, along with 
their characterization, are detailed in Supplementary Tables S3 
and S4. 

 

 
Figure 4. Number of clinical variables to differentiate people with neurogenic 
oropharyngeal dysphagia from healthy people. 

 

In Protocol 3, 12.1% (136/1,125) of the paired variables showed 
statistically significant differences before and after swallowing in 
both groups. To reduce this set, 17 PCA models were performed, 
organized into blocks based on the five main vocal features—
phonation, connected speech, sustained vowel, diadochokinesis, 
and prosody, along with their respective sub-characteristics. This 
process reduced the 136 significant paired variables to 61 latent 
variables, distributed as follows: phonation, 39.3% (24/61); 
connected speech, 37.7% (23/61); and sustained vowel, 23% 
(14/61). The latent voice variables derived from Protocol 3, along 
with their characterization, are detailed in Supplementary Table 
S5. 

Figure 5 summarizes the comparison, identification, and 
dimensionality reduction process for the set of quantitative 
variables obtained from the three non-invasive biosignal 
acquisition protocols used in this study. 

158 Clinical Variables

Signs on physical examination

Oral Motor Test

Swallowing characteristics and symptoms

Sociodemographic data and medical history

Case/Control Comparison

Qualitative Variables

Chi-square test
Fisher’s exact test

Quantitative Variables

Mann–Whitney U test

Welch’s t-test 

Student’s t-test 

Variables with statistically significant 

differences p <0,005

88 Clinical Variables
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Figure 5. Summary of variable reduction from three protocols for electromyography, laryngeal accelerometry, and voice signals among people with neurogenic 
oropharyngeal dysphagia and healthy subjects. 
sEMG: surface electromyography. KMO: Kaiser-Meyer-Olkin test. CA: cervical accelerometry. 
 

The 88 clinical variables identified through the comparison 
process (p-value < 0.005), together with the 36 latent variables 
from Protocol 1, 143 from Protocol 2, and 61 from Protocol 3 (all 
derived through PCA-based dimensionality reduction), were 
included in the initial construction phase of three independent 
binary logistic regression models. At this stage, clinical variables 
were integrated with the biosignal features of each protocol 
separately (Figure 6). 

Subsequently, the clinical and biosignal variables from each 
protocol that were retained in the initial models were selected and 
incorporated into a final integrative model. This model included 
variables: five clinical (two related to respiratory history and three 
from the physical examination, including one variable from the 
oral motor test involving solid consistency—cracker) and four 
biosignal variables (two from voice—Protocol 3, one from 
laryngeal CA—Protocol 2, and one from sEMG—Protocol 1). 
The final model achieved an AIC of 51.7 and a Nagelkerke R² of 
0.906, with no evidence of collinearity between the selected 
variables (Table 2). 

The final algorithm shows that the following variables 
collectively explain 90.6% of the probability of NOD: respiratory 
comorbidity, intubation longer than one week, impaired lateral lip 

movement, multiple swallows when ingesting a cracker-type 
consistency, changes in BMI, a zero-crossings feature from the 
sEMG signal in the left infrahyoid region while swallowing 20 ml 
of water, a logarithmic detector feature in the mediolateral axis of 
the laryngeal CA signal during 10 ml yogurt swallowing, a Bark 
band energy feature in connected speech before swallowing, and 
a first derivative feature in the phonation of the vowel "A" after 
swallowing. This model successfully integrates clinical variables 
with non-invasive swallowing biosignals, achieving high 
explanatory capacity. 

 

 

Mann–Whitney U test
Student’s t-test
Welch’s t-test  

Mann–Whitney U test
Student’s t-test
Welch’s t-test  

2464 sEMG variables from 
protocol 1

Comparison of sEMG
signals between 
cases/controls

966 variables with statistically significant 
differences (p<0.05)

Principal Component Analysis.
Criterion: sphericity test <0.001 and 

overall KMO ≥0.800

36 latent sEMG variables 
from protocol 1

1491 sEMG and CA variables from 
protocol 2

Comparison of sEMG and 
CA signals between 

cases/controls

804 variables with statistically significant 
differences (p<0.05)

Principal Component Analysis.
Criterion: sphericity test <0.001 and overall 

KMO ≥0.800

143 latent variables from protocol 2

72 CA variables 71 sEMG variables

1125 Paired voice variables from 
protocol 3

Comparison of voice 
signals before and after 

swallowing between 
cases/controls

136 paired variables with statistically 
significant differences (p<0.05)

Student’s t-test
Wilcoxon Test

Principal Component Analysis.
Criterion: sphericity test <0.001 and 

overall KMO ≥0.800

61 paired latent voice variables 
from protocol 3
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Figure 6. Summary of the initial development of three logistic regression models that included clinical variables and non-invasive swallowing signal variables to identify neurogenic oropharyngeal dysphagia. 
p: p-value. VIF: variance inflation factor. AIC: Akaike information criterion. R²N: Nagelkerke's R². 

 

Initial development phase for logistic regression models between clinical variables and signal data for each separate protocol

Model 1: Clinical and Latent Variables from 
Protocol 1

Model 2: Clinical and Latent Variables from 
Protocol 2

Model 3: Clinical and Latent Variables from 
Protocol 3

Clinical Variables VIF p-value
Respiratory Comorbidity 1.14 0.07

Intubation longer tan a week? 1.25 0.02

Do you cough before you swallow? 1.25 0.01

Current loss of apetite 1.68 <0.001

Body Mass Index 1.27 0.02

Impaired lateral lip movement 1.4 0.001

Lingual fasciculations 1.6 0.001

Multiple swallows per bolus (cracker) 1.48 <0.001

sEMG Variables from Protocol 1 VIF P-value
A20_max_ZC_LIH: Maximum number of zero 
crossings in the left infrahyoid muscle group 
during 20 ml water intake.

1.53 0.005

A5_mean_ZC_RIH: Mean number of zero crossings 
in the right infrahyoid muscle group during 5 ml 
water intake.

1.52 0.02

A10_std_Sample_ent_LSH: Standard deviation of 
sample entropy in the left infrahyoid muscle group 
during 10 ml water intake.

1.7 0.002

AIC 79.3

R²N 0.837

Clinical Variables VIF p-value
Intubation longer tan a week? 1.31 0.04

Do you cough before you swallow? 1.45 0.03

Current loss of apetite 1.34 0.003

Lingual fasciculations 1.39 0.007

Multiple swallows per bolus (cracker) 2.23 <0.001

sEMG Variables from Protocol 2 VIF P-value

Y5_std_MYOP_LSH: Standard deviation of the 
myopulse percentage rate in the left suprahyoid 
muscle group during 5 ml yogurt intake.

1.7 0.004

S_mean_log_SI: Mean value of the logarithmic 
detector in the superior-inferior axis of laryngeal 
movement during saliva swallowing .

1.35 0.005

Y10_std_log_ML: Standard deviation of the 
logarithmic detector in the medial-lateral axis of 
laryngeal movement during swallowing of 10 ml of 
yogurt.

1.73 0.002

Y20_mean_DASDV_AP: Mean value of the 
absolute standard deviation difference in the 
anterior-posterior axis of laryngeal movement 
during 20 ml yogurt swallowing. 

1.45 0.02

AIC 74.7

R²N 0.855

Clinical Variables VIF p-value
Respiratory Comorbidity 1.4 0.02

Intubation longer tan a week? 1.48 0.009

Current loss of apetite 1.28 0.02

Body Mass Index 1.96 0.003

Impaired lateral lip movement 1.78 <0.001

Lingual fasciculations 1.52 0.031

Multiple swallows per bolus (cracker) 1.6 0.003

Cough (yogurt) 1.79 0.007

sEMG Variables from Protocol 3 VIF P-value

Arti_con_BBE_on3_std_PRE: Standard deviation in 
Bark energy bands during continuous speech prior 
to swallowing.

2.41 <0.001

Phonation_DF0_kurt_A_POS: Kurtosis of the first 
derivative of the fundamental frequency during 
sustained phonation of the vowel 'A' after 
swallowing.

1.41 0.005

AIC 63.7

R²N 0.893

Initial phase: Integration into a single logistic regression model of 
clinical variables and latent variables from all three protocols combined
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Table 2. Final integrated model combining clinical variables with non-invasive swallowing signals to differentiate healthy individuals from patients 
with neurogenic oropharyngeal dysphagia. 

Predictor OR (CI 95%) p-value VIF 

Respiratory Comorbidity 479.19 (2.29 –100075.74) 0.024 1.67 

Intubation longer than a week 3353.64 (8.94 – 1.26 e0+6) 0.007 1.89 

Impaired lateral lip movement 57.96 (2.87 – 1168.94) 0.008 1.61 

Multiple swallows when eating a cracker 27.74 (2.74 – 280.10) 0.005 1.37 

Body Mass Index 0.75 (0.58 – 0.98) 0.038 1.95 

p1_A20_max_ZC_LIH: Maximum number of zero crossings in the left infrahyoid muscle group 
during 20 ml water intake in protocol 1. 

1.09 (1.01 – 1.18) 0.020 2.23 

p2_Y10_std_log_ML: Standard deviation of the logarithmic detector in the medial-lateral axis of 
laryngeal movement during swallowing of 10 ml of yogurt in protocol 2. 

1.55e-14 (1.42 e-25 – 0) 0.014 1.67 

p3_Arti_con_BBE_on3_std_PRE: Standard deviation in Bark energy bands during continuous 
speech prior to swallowing consistencies in protocol 3. 

0 (2.64e0-5 – 0.06) < .001 2.06 

p3_Phonation_DF0_kurt_A_POS: Kurtosis of the first derivative of pitch during phonation of 
the vowel 'A' after swallowing consistencies in protocol 3 

0.91 (0.86 – 0.96) 0.003 1.87 

Model Fit Measures    

Model AIC R2
N  

Clinical variables plus signals 51.7 0.906  

OR: odds ratio. CI 95: confidence interval at 95%. VIF: variance inflation factor. e: exponent. AIC: Akaike information criterion. R²N: Nagelkerke’s R². 
 

DISCUSSION 

This study aimed to develop an algorithm capable of 
distinguishing individuals without dysphagia from patients with 
neurogenic oropharyngeal dysphagia (NOD). To achieve this, a 
multimodal model was built by integrating a wide range of clinical 
variables and features extracted from surface electromyography 
(sEMG), laryngeal accelerometry (CA), and voice quality, both 
before and after swallowing various food consistencies and 
volumes. The result was an original and pioneering model that, by 
combining five clinical variables and four biosignal features 
(obtained from sEMG across four muscle groups, laryngeal CA, 
and vocal characteristics), enables the distinction between 
individuals without dysphagia and those with NOD. 

Model development was based on binary logistic regression 
incorporating both clinical and biosignal variables, and it required 
an extensive comparison and reduction process applied to a large 
number of clinical and biosignal features in both the case and 
control groups. This approach, novel in the multimodal analysis 
of swallowing, allowed for identifying variables capable of 
distinguishing healthy individuals from those with NOD. The 
features extracted from sEMG, CA, and voice were quantitative 
and derived through non-invasive methods during the swallowing 

of foods with varying textures and volumes, making this 
procedure a clear example of the advantages offered by 
computational deglutition (Sejdic et al., 2019). 

Notably, clinical variables alone, as well as several individual 
features from sEMG, laryngeal CA, and voice (before and after 
swallowing), showed the capacity to differentiate patients with 
NOD from healthy controls. However, by applying 
dimensionality reduction techniques to identify the most relevant 
variables and subsequently integrating them through binary 
logistic regression models (combining clinical and biosignal 
variables), the overall classification and explanation of NOD were 
significantly enhanced. These results demonstrate the feasibility 
of developing models that combine clinical data and biosignals 
through multimodal analysis. 

The final model indicates that the variables best predicting the 
presence of NOD (with an accuracy of 90.6%) include two 
medical history items obtained during anamnesis, three findings 
from physical examination, one sEMG signal feature in the 
infrahyoid region during water swallowing, one feature from the 
laryngeal CA signal in the mediolateral axis during yogurt 
swallowing, and two changes in subfeatures of the voice—
specifically in continuous articulation and phonation of the vowel 
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"A." Interestingly, the final model did not include any direct 
symptoms of dysphagia, but was constructed based on the 
presence of comorbidities, clinical history, physical examination, 
and the objective quantification of three biosignals easily 
obtainable in a clinical setting. Therefore, this approach supports 
practical and straightforward implementation in professional 
practice. 

It is noteworthy that, to date, no other studies have integrated sets 
of clinical and biosignal variables using binary logistic regression 
in dysphagia in general, nor in NOD specifically. In a previous 
study, Lee et al. (2009) used neural networks to analyze data from 
cervical accelerometry, mechanomyography, and nasal airflow to 
segment the swallowing process. However, their research did not 
include clinical variables, nor did it attempt to classify patients 
with or without NOD. Similarly, Chien and colleagues (Hsu et al., 
2013) developed a system to assess dysphagia severity in 23 
patients with myasthenia gravis by capturing swallowing sounds 
via a microphone and electromyography. Nonetheless, their study 
was limited to water swallowing, used sEMG electrodes only on 
the mentum and laryngeal regions, and did not integrate any 
clinical variables into the system. 

Our research team had previously reported an explanatory clinical 
model based on binary logistic regression, developed by 
combining nine clinical variables and demonstrating an ability to 
predict the probability of NOD with 78.8% accuracy (Escudero 
et al., 2024). That model included the following variables: 
presence of respiratory comorbidity, intubation lasting more than 
one week, coughing before swallowing, current loss of appetite, 
changes in body mass index (BMI), impaired orofacial praxis 
(specifically lateral lip movement), presence of lingual 
fasciculations, need for multiple swallows when ingesting hard 
and dry consistencies, and coughing when swallowing thickened 
liquids. Five of these variables are shared with the current model: 
a history of respiratory comorbidity, prolonged intubation, 
impaired orofacial praxis, changes in body mass index (BMI), and 
multiple swallows for solid consistencies. Thus, by incorporating 
biosignals, the current model improved its explanatory capacity 
by 11.8%. This work highlights the importance of integrating non-
invasive, routine instrumental variables with clinical data and 
developing new advances in understanding the complex 
phenomenon of dysphagia. 

 

CONCLUSIONS 

This study presents, for the first time, a model capable of 
predicting the presence of NOD with 90.6% accuracy by 

integrating five clinical variables and four biosignals. These 
findings demonstrate that the application of computational 
deglutition (Sejdic et al., 2019), utilizing non-invasive and 
quantitative approaches such as sEMG, laryngeal accelerometry, 
and voice analysis, is enhanced and complemented when 
combined with clinical variables routinely collected in healthcare 
practice. Furthermore, the results support the feasibility of 
implementing models, flowcharts, or algorithms that improve the 
classification and characterization of patients with NOD in 
clinical settings. 

In the medium term, the aim is to develop additional explanatory 
models to distinguish between progressive and non-progressive 
neurogenic causes of dysphagia, as well as to assess the 
longitudinal behavior of biosignals and their predictive value for 
detecting improvement or deterioration in cases of functional 
oropharyngeal dysphagia. 
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