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ABSTRACT

Clinical variables and biosignals can potentially be identified during the assessment, screening, and diagnostic characterization of
neurogenic oropharyngeal dysphagia (NOD). This study aimed to develop an integration model to distinguish healthy individuals from
patients with NOD by combining clinical variables with features extracted from surface electromyography (sEMG), laryngeal
accelerometry (LA), and voice signals. These signals were recorded before and after swallowing different consistencies and volumes
of food. A case-control study was conducted, including 80 healthy individuals and 86 patients diagnosed with NOD, and 158 clinical
variables and 5,080 non-invasive swallowing-related signal features were collected. After dimensionality reduction, the data were
integrated using logistic regression models. Statistically significant differences were found in 88 clinical variables, 36 latent variables
from SEMG, 72 combined features from sEMG and LA, and 61 from voice signals. The final model included five clinical and four
biosignal variables: two background variables, three findings from the physical examination, one SEMG feature from the infrahyoid
region during water swallowing, one LA feature in the mediolateral axis during yogurt swallowing, and two voice subfeatures
reflecting changes observed during continuous articulation and sustained phonation of the vowel “a.” Together, these variables
explained 90.6% of the variance in classifying individuals as NOD patients. The integration of computational swallowing
methodologies using non-invasive signal processing with clinical variables may enhance screening and supplement gold-standard
diagnostic tools in oropharyngeal dysphagia.

Modelo de integracion entre variables clinicas y biosefiales de deglucion
computacional en disfagia orofaringea neurogénica

RESUMEN

En la disfagia orofaringea neurogénica (DON) existen variables clinicas y biosefiales potencialmente identificables durante su
evaluacion, tamizaje y caracterizacion diagnostica. Este estudio desarrollé un modelo para diferenciar personas sanas de pacientes con
DON mediante la integracion de variables clinicas con caracteristicas extraidas de sefales de electromiografia de superficie (SEMQG),
acelerometria laringea (AC) y voz, registradas antes y después de la deglucion de distintas consistencias y voliimenes. Se disefid un
estudio de casos y controles que incluyé 80 personas sanas y 86 con diagnostico de DON. Se recolectaron 158 variables clinicas y
5.080 variables derivadas de sefiales no invasivas asociadas a la deglucion. Tras una reduccion de variables, los datos fueron integrados
mediante modelos de regresion logistica. Se identificaron 88 variables clinicas con diferencias estadisticamente significativas, junto
con 36 variables latentes de SEMG, 72 combinadas de SEMG y AC laringea, y 61 de sefales de voz. El modelo final integré cinco
variables clinicas y cuatro caracteristicas de las biosefiales: dos antecedentes, tres hallazgos al examen fisico, una caracteristica de
SEMG en la region infrahioidea al deglutir agua, una caracteristica de AC laringea en el eje medio-lateral al deglutir yogur, y dos
cambios en subcaracteristicas de la voz observados en articulacion continua y en la fonacion de la vocal “a”. Estas variables explican
el 90,6% del fenomeno de ser paciente con DON. La integracién de metodologias de deglucion computacional con variables clinicas
podria mejorar el tamizaje y complementar las pruebas de referencia en disfagia orofaringea.
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Integration Model of Clinical Variables and Computational Swallowing Biosignals in Neurogenic Oropharyngeal Dysphagia

INTRODUCTION

Dysphagia is a swallowing disorder (Sejdic etal., 2019) that
results from dysfunction in one or more of the phases of the
swallowing mechanism—namely, the anticipatory (pre-oral)
phase, oral preparatory phase, oral propulsive phase, pharyngeal
phase, and esophageal phase. This disorder compromises both the
safety and efficiency of swallowing, as well as the person’s
nutritional and respiratory status and overall quality of life
(McCarty & Chao, 2021). Clinically, dysphagia is classified into
oropharyngeal dysphagia (difficulty initiating swallowing) and
esophageal dysphagia (sensation of food stuck in the esophagus)
(Hurtte et al., 2023). Etiologically, we can find structural, motor,
and functional causes (Suarez-Escudero et al., 2022). Structural
causes involve conditions that narrow the oral, pharyngeal, or
esophageal lumen; motor causes disrupt peristalsis and relaxation
of the esophageal sphincter, and functional causes refer to
impairments in the physiological processes of swallowing,
including neurological control and neuromuscular coordination
(Suéarez-Escudero et al., 2022).

Although dysphagia may be a symptom of a systemic disease, its
most common etiology is neurological (Altman et al., 2013). One
of the most prevalent forms is neurogenic oropharyngeal
dysphagia (NOD) (Suarez-Escudero et al., 2022), a functional
disorder frequently associated with pulmonary and nutritional
complications (Gallegos et al., 2017). Oropharyngeal dysphagia
has been reported in 30% to 82% of patients with neurological and
neurodegenerative diseases (Terré-Boliart et al., 2004), and its
severity can range from mild to severe (Ciucci et al., 2019).

Dysphagia is a heterogeneous and complex multi-etiological
syndrome with diverse phenotypic patterns depending on the
underlying neurological disease (Warnecke et al., 2021), which is
especially true in the case of NOD. It is commonly associated with
a range of symptoms and signs that can be identified through
formal screening and diagnostic tools, such as the Eating
Assessment Tool-10 (EAT-10) (Zhang et al., 2023) and Clinical
Swallowing Evaluation (CSE) (Cook, 2008; O’Horo et al., 2015).
These tools allow for the clinical classification of dysphagia
(oropharyngeal vs. esophageal) and aid in identifying potential
etiologies. However, they fail to accurately and precisely
characterize the presence or absence of specific subtypes, such as
NOD.

In addition to clinical characteristics, such as symptoms and signs
identified through medical history and physical examination,
patients with NOD generate biosignals that can be recorded and
analyzed using sensors during the swallowing of different

Revista Chilena de Fonoaudiologia 24(1), 1-14, 2025

volumes and consistencies. These biosignals hold significant
clinical potential and can be captured using various technologies.
Surface electromyography (SEMG) is a widely used method in
which several electrodes are placed on the neck region to assess
muscle activity during swallowing in both healthy individuals and
those with dysphagia. Several studies have validated this
technique (Hsu et al., 2013; Koyama et al., 2021; Vaiman et al.,
2009). Another relevant technology is laryngeal accelerometry,
which tracks the movement of the hyoid and detects dysphagia
through sensors placed externally (Mao et al., 2019; Zoratto et al.,
2010).

Additionally, voice quality analysis has been employed to assess
changes associated with dysphagia (Waito et al., 2011). Phonetic
test batteries, including assessments of lip, tongue, and jaw
diadochokinesis, help predict dysphagia and detect aspiration in
patients in intensive care units (Festic etal., 2016). These
biosignals enable clinicians to examine both the
electrophysiological and mechanical aspects of swallowing.
However, to date, these techniques have been primarily used in
isolation, following unimodal approaches. Integrating these tools
under multimodal frameworks could significantly improve the
detection and characterization of dysphagia, including NOD, by
combining multiple sources of information to provide a more
precise and comprehensive assessment (Roldan-Vasco, Orozco-
Duque, et al., 2023).

The aforementioned underscores the need to develop new
approaches to improve screening and diagnostic characterization
processes. In recent years, advances have been made in signal and
image processing algorithms, which are now used as methods for
studying swallowing and supporting the diagnostic process. This
approach, known as computational deglutition, has emerged as a
translational subfield at the intersection of medicine, engineering,
and signal/image processing (Sejdic et al., 2019).

Recent studies have explored the combination of biosignals in
swallowing analysis. Examples include the integration of
submental mechanomyography, nasal airflow, and biaxial
cervical accelerometry (Lee et al., 2009); electromyography and
bioimpedance (Schultheiss et al., 2014); and videofluoroscopy
combined with high-resolution cervical auscultation (Donohue
etal., 2021). Another study using multimodal analysis—
combining SEMG signals from suprahyoid and infrahyoid regions
with cervical auscultation based on triaxial accelerometry—
showed that this integration improves the performance of
automated classification models for dysphagia detection (Roldan-
Vasco, Restrepo-Uribe, etal., 2023). Other research has
combined sets of clinical variables to predict acute dysphagia
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following radiotherapy (De Ruyck et al., 2013) and aspiration in
oropharyngeal dysphagia (Heijnen etal., 2020). Moreover, a
recent study proposed a model based solely on clinical
variables—accessible through patient history and swallowing
examination—that partially explains the presence of NOD
(Escudero et al., 2024).

It is, therefore, plausible to consider that integrating clinical
variables extracted from multiple groups of biosignals could help
explain, identify, and classify patients with NOD. Combining
these data may lead to models that support and complement the
screening and diagnostic processes carried out by healthcare
professionals. However, to date, no studies have integrated
biosignals derived from computational deglutition analysis with
clinical variables observed in patients with NOD.

This study aimed to develop an algorithm-based explanatory
model capable of distinguishing between healthy individuals and
patients with NOD by integrating clinical variables with features
extracted from sEMG signals, laryngeal accelerometry, and voice
quality before and after swallowing various volumes and
consistencies.

METHOD

A case-control study was conducted using data from clinical
assessments and non-invasive swallowing signals. The control
group consisted of people without dysphagia or any neurological
or neuromuscular comorbidities. In contrast, the case group was
composed of patients diagnosed with neurogenic oropharyngeal
dysphagia (NOD).

Participants

Sample size estimation was performed using Epidat®, yielding a
total of 76 participants in the case group and 76 in the control
group. The calculation was based on a sensitivity of 80%, as
reported in the literature for the Clinical Swallowing Evaluation
(CSE) (Cook, 2008), with a statistical power of 80% and a 95%
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confidence level. It was projected that the new clinical algorithm
would increase sensitivity by 15% (expected sensitivity of 95%)
compared to the CSE alone, while maintaining 80% power and a
95% confidence level.

Participants in the case group were recruited from 12 private
speech-language therapy practices specializing in swallowing
disorders, 10 healthcare institutions (IPS) offering dysphagia
services, four long-term care facilities for older adults, and three
patient foundations located in the Valle de Aburra and San
Nicolas regions of Antioquia, Colombia.

Participants without dysphagia (control group) were recruited
from two senior community centers, two universities, and one
neighborhood community board (Junta de Accion Comunal)
located in the Valle de Aburra (Medellin), as well as from healthy
relatives of patients. Table 1 details the eligibility criteria for cases
and controls.

A neurologist with clinical expertise in NOD assessed the
eligibility of the case group, supported by a speech-language
therapist trained in swallowing and dysphagia. On the other hand,
a physician specialized in neurological rehabilitation with training
in swallowing and dysphagia determined eligibility for the control
group. The study was conducted from the first semester of 2019
to the first semester of 2022.

The research team assessed 288 individuals between March 2019
and December 2021, comprising 103 (35.7%) healthy controls
and 185 (64.3%) with oropharyngeal dysphagia. The final sample
consisted of 166 participants: 80 controls and 86 NOD cases (see
Figure 1), all of whom underwent the CSE and three non-invasive
biosignal protocols.

Among the NOD cases, 59.3% (51/86) were male, whereas 53.8%
(43/80) of the controls were female. The median age in both
groups was 61 years. In the case group, the etiology was primarily
central neurological causes (88.4%, 76/86), followed by
neuromuscular causes (11.6%, 10/86).
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Table 1. Eligibility criteria for cases and controls.

Eligibility Criteria Controls

Cases

Inclusion Criteria

Exclusion Criteria

Age >18, both sexes; no dysphagia or central,
peripherical, or neuromuscular neurological

Age >18, both sexes; presence of neurogenic oropharyngeal
dysphagia of at least one month in duration.

diseases. Diagnosis of central neurological or neuromuscular pathologies
Total score in the Eating Assessment Tool <3 that, in their progress, have resulted in oropharyngeal dysphagia.
Points. Total score in the Eating Assessment Tool >3 points (Giraldo-

No comorbidities like head and neck cancer,
COPD, or surgical procedures in the 2/3 lower
part of the face or neck, no use of botulinum
toxin.

Undergoing active endodontic procedures;
presence of congenital malformations in the
oral cavity, tongue, and neck; diagnosis of
Sjogren's disease and cognitive impairment.

Cadavid et al., 2016).

Symptoms like coughing, a sensation of food being stuck in the
throat, a choking sensation related to swallowing food, and/or
voice changes when swallowing, as well as difficulty initiating
swallowing or the need for multiple swallows to ingest food, as
observed during physical examination.

Exclusively esophageal dysphagia, mechanical, propulsion-related,
or iatrogenic dysphagia; irradiated skin in the facial and/or cervical
region; edema or hematoma in the orofacial and cervical area that
prevents sensor placement; recent surgical dissection (<3 months)
on the neck skin; severe hypoxemia (ambient oxygen saturation
<80% unresponsive to oxygen therapy); deep brain stimulation
implants; advanced-stage dementia that prevents understanding of
simple commands for chewing and swallowing; presence of
congenital structural malformations in the oral cavity, tongue, or
neck; diagnosis of Sjogren's disease; and undergoing active
endodontic procedures.

Healthy People Assessed
N=103

I

People Contacted
Identified Candidates N=185

!

Healthy People Excluded =23
5 with incomplete voice signal protocol
4 with chronic obstructive pulmonary disease
4 with mechanical dysphagia
3 with central nervous system disease
3 without recorded voice signals
2 with neuromuscular disease
2 with errors in signal recording and storage

It was not possible to schedule an intake assessment for 93 of the
candidates due to difficulties with transportation, hospitalization,
lack of a relative to accompany them, or voluntary decision not to
participate.

{

People Assessed N=107

I

Sample of healthy people with clinical
assessment + signal recording: N=80

Figure 1. Flowchart of the recruitment and selection process for cases and controls.
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People excluded N=21
4 without an etiological diagnosis of dysphagia.
4 with errors in synchronous recording and signal storage.
3 without neurogenic oropharyngeal dysphagia, based on clinical
evaluation and diagnostic methods.
3 with an Eating Assessment Tool-10 (EAT-10) score < 2.
3 with advanced-stage dementia and no comprehension of simple
commands.
2 with deep brain stimulators.
2 with severe hypoxia.

l

Sample of patients with neurogenic
oropharyngeal dysphagia with
clinical assessment + signal
recording: N=86
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Description of Instruments and Procedures

Both groups were assessed using a standardized protocol to ensure
data comparability. The Eating Assessment Tool (EAT-10) was
used to detect dysphagia. Additionally, a CSE protocol was
implemented to collect clinical variables that could be integrated
with features extracted from non-invasive swallowing signals to
create an explanatory model for NOD. The signals were
subsequently recorded to identify biomarkers to characterize and
analyze the swallowing function and incorporate them into the
model.

Eating Assessment Tool (EAT-10): This instrument was used for
sample selection. It was chosen due to its validation in Colombia
and its strong balance between sensitivity and specificity
(Giraldo-Cadavid et al., 2016). A cutoff score of >3 points was
considered to indicate the presence of dysphagia.

CSE: This protocol includes a medical history focused on
swallowing  characteristics and  dysphagia  symptoms.
Additionally, information was gathered on medications that could
affect swallowing (e.g., neuroleptics, barbiturates, anxiolytics,
non-steroidal anti-inflammatory drugs, muscle relaxants,
anticholinergics, and tricyclic antidepressants). A physical
examination was conducted to assess the oral cavity, respiratory
system, lower cranial nerves (including the trigeminal and facial
nerves), orofacial movement, and pulmonary auscultation.
Furthermore, an evaluation of the anatomy, function, sensitivity,
and reflexes of the swallowing mechanism was performed, with
an emphasis on the oral and pharyngeal phases (Ricci Maccarini
et al., 2007). Height, weight, and oxygen saturation were also
recorded. Variables extracted from the CSE were grouped into the
following categories: (1) sociodemographic characteristics and
medical history, (2) swallowing characteristics, (3) dysphagia
symptoms, and (4) findings from the physical examination.

Non-invasive Swallowing Signal Recording: This was performed
after the CSE. Biosignals from surface electromyography
(sEMQG), cervical accelerometry (CA), and voice were collected
and selected for their capacity to assess the electrophysiological,
kinematic, and phonatory dimensions of swallowing,
respectively.

Surface electromyography signals were chosen because they
provide data on the electrophysiological aspects of swallowing by
capturing neuromuscular activity from muscle groups involved in
the oral and pharyngeal phases (e.g., lip, masseter, supra- and
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infrahyoid regions) (Roldan-Vasco, Orozco-Duque, et al., 2023;
Roldan-Vasco, Restrepo-Uribe, et al., 2023).

It is noteworthy that our research team had previously validated
these biosignals (Roldan-Vasco et al., 2018, 2021; Roldan-Vasco,
Orozco-Duque, etal.,, 2023; Roldan-Vasco, Restrepo-Uribe,
et al., 2023). This procedure aimed to obtain recordings of these
signals both before and after swallowing in participants from both
groups.

To this end, three non-invasive biosignal detection and recording
protocols were used while participants performed swallowing
tasks with different food consistencies at sub-therapeutic
volumes. Sub-therapeutic volumes were used as a safety measure,
particularly for patients with NOD.

The three protocols are presented below:

Protocol 1: Surface electromyography (sEMG) signals were
recorded from four muscle groups using electrodes designed to
capture signals synchronously. The muscle regions included (a)
orbicularis oris, (b) bilateral masseter, (c) bilateral suprahyoid,
and (d) bilateral infrahyoid (Figure 2a). The sSEMG signals were
acquired using a Noraxon Ultium™ electromyograph with
disposable silver/silver chloride (Ag/AgCl) electrodes (20 mm
diameter, integrated gel), a sampling rate of 2 kHz, and a band-
pass filter with cutoff frequencies between 10 and 500 Hz.

Following the setup of Protocol 1, an oral motor test was
performed using specific volumes and consistencies in the
following sequence: 5 mL of yogurt, pause; 10 mL of yogurt,
pause; 20 mL of yogurt, pause (thick milk-based yogurt without
fruit pieces); 3 grams of plain salted cracker, pause; saliva
swallow, pause (after evaluating the risk of adverse events prior
to administering water); 5 mL of water, pause; 10 mL of water,
pause; and finally, 20 mL of water.

This sequence was adapted from the protocol by Sampaio et al.
(2014), with reduced volumes (from 50 mL to 35 mL) as a safety
measure. Our research group had validated and used the adjusted
protocol in prior studies (Escudero et al., 2024; Roldan-Vasco,
Orozco-Duque, etal.,, 2023; Roldan-Vasco, Restrepo-Uribe,
et al., 2023). They included different consistencies because the
physiological process of swallowing varies between solid (e.g.,
crackers) and liquid substances (e.g., water, yogurt, and saliva)
(Matsuo & Palmer, 2008). During the swallowing of each
consistency and volume, the signals were recorded digitally
through sSEMG, CA, or both.
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Orbicularis Oris Region

Right %\_\ Left
Masseter S Masseter
Region Region
Dy Sl
~ ——
Right Suprahyoid Left Suprahyoid Left Suprahyoid
Region Region Region
Accelerometry
Right Infrahyoid Left Infrahyoid Unit
Region Region
Protocol 1 Protocol 2

Figure 2. Electrode placement and positioning for protocols 1 and 2.

2a (Protocol 1): Electrodes were placed in four muscle regions: orbicularis oris, bilateral masseter, bilateral suprahyoid, and bilateral infrahyoid.
2b (Protocol 2): Electrodes were placed in the bilateral suprahyoid region and the right infrahyoid region, following the same anatomical references described for protocol

1. Additionally, a triaxial accelerometry unit was positioned in the anterior cervical region, on the skin overlying the larynx, using the space between the thyroid and

cricoid cartilages as a reference.

T OB

TR0y
T

—

: Protocol 1
Synchronous signal recording

SEMG in four muscle groups during

i the first swallow

voice

Protocol 3 »
Before Swallowing
Digital voice recording:

Production of phonemes and
sustained vowels
Repeating words/syllables
Reading sentences

POOJ Y)im Jsa1 IOJOW [BIO

Figure 3. Sequence of the three protocols used to record the signals

voice

Protocol 3

: After Swallowing

i Digital voice recording:

; Protocol 2 Production of phonemes and
Synchronous signal recording sustained vowels

¢ sEMG in two groups plus laryngeal Repeating words/syllables

i CA during the second swallow Reading sentences

POO4 UJIM }S81 IOJOI (IO

OB: orbicularis oris region. RM: Right masseter region. LM: left masseter region. RSH: right suprahyoid region. LSH: left suprahyoid region. RIH: Right infrahyoid

region. LIH: left infrahyoid region. AC: laryngeal accelerometry unit.

Protocol 2: This protocol involved recording SEMG signals from
three of the four muscle groups analyzed in Protocol 1, aiming to
detect  neuromuscular  activation  (electrophysiological
dimension). Simultaneously, a kinematic recording was
performed using cervical accelerometry (CA) to capture
displacements that occur during the pharyngeal phase of
swallowing (mechanical dimension) (Roldan-Vasco, Restrepo-
Uribe et al., 2023). Electrodes were positioned bilaterally over the
suprahyoid region and on the right side of the infrahyoid region.
Additionally, a triaxial analog accelerometer (MMA7362) was
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placed on the anterior cervical region, aligned with the larynx
(Figure 2b).

The sEMG signal was obtained using the same equipment as in
Protocol 1. The CA signal was captured using a triaxial analog
accelerometer (MMA7362) designed to detect laryngeal
movement. The accelerometer was connected to a NI-USB 6515
DAQ data acquisition board, which had a 10 kHz sampling rate
and a band-pass filter with cutoff frequencies set at 0.1 kHz and 3
kHz. The three CA channels captured data along the anterior-
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posterior (AP), superior-inferior (SI), and medial-lateral (ML)
axes.

Once sensor placement for Protocol 2 was completed, we repeated
the oral motor test described in Protocol 1.

Protocol 3: This consisted of digital voice recording using a
Logitech H390 headset microphone and the Audacity software
(Muse Group, 2021). Voice recordings were taken both before
and after the oral motor test carried out in Protocols 1 and 2.
Participants were asked to produce specific phonemes, words, and
pre-designed sentences. Voice recordings help analyze speech-
related dimensions (such as phonation, articulation, and prosody),
given that swallowing and speech share common anatomical
structures and neurological networks (Roldan-Vasco et al., 2021).

Figure 3 illustrates the protocol sequence and the position of the
oral motor test within the signal recording process.

Data Processing

The sEMG and CA signal analysis began with noise removal
using a method previously developed and reported by our research
team (Sebastian et al., 2020). Subsequently, features in both time
and frequency domains were extracted using a sliding window
technique. This method generates a vector for each function and
acquisition channel. The mean, standard deviation, skewness,
kurtosis, and minimum and maximum values were then computed
for each vector. This process aimed to scale each feature, resulting
in a single data point per channel and feature. The sliding window
size for both CA and sEMG signals was experimentally defined
between 100 ms and 250 ms, with a 50% overlap between
consecutive windows. Detailed signal processing procedures have
been previously published (Roldan-Vasco, Restrepo-Uribe, et al.,
2023).

For voice signals, preprocessing included data normalization
using Sound eXchange (bitrate: 13 bps, downsampling: 8 kHz,
band-pass filter between 0.2 kHz and 3.4 kHz). Subsequently,
various speech-related features were extracted using Python and
the Parselmouth library. The specifics of this processing are
available in previously published work (Florez-Gomez et al.,
2022).

Data Analysis

Firstly, a descriptive analysis of the assessed variables was
conducted, using the Shapiro—Wilk test to verify the normality of
quantitative variables. Exploratory odds ratios (OR) were
calculated with 95% confidence intervals. Then, a bivariate
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analysis was performed on clinical variables and the signals
obtained from the three protocols.

Chi-square tests or Fisher's exact test were applied for qualitative
variables. For quantitative signals, specific tests were selected
based on data distribution; the Mann—Whitney U test was used for
non-normally distributed variables. At the same time, Student's or
Welch's #-tests were applied to normally distributed variables after
testing for homogeneity with Levene's test (Protocols 1 and 2).
Variables in Protocol 3 were analyzed using paired samples
through the Wilcoxon test (for non-normal distributions) or
Student #-test (for normal distributions). Variables with
statistically significant differences (p < 0.005) were retained as a
criterion for dimensionality reduction.

Significant variables were then subjected to Principal Component
Analysis (PCA) as a data reduction method, with varimax rotation
applied. The number of components was determined based on
eigenvalues, supported by sphericity testing (Bartlett's test, p <
0.001), and sampling adequacy was evaluated using the Kaiser—
Meyer—Olkin test (KMO > 0.800 indicating good to excellent
adequacy). Latent variables with correlations > 0.8 within
components were selected.

Binary logistic regression models were then constructed to
classify cases (patients with NOD) and controls (healthy
individuals). The parameters used for model construction
included: a) Dependent variable: case/control status (reference
category: healthy), b) Covariates: latent variables derived from
signal data and qualitative clinical variables, c) Collinearity:
assessed through the variance inflation factor (VIF), with ideal
values between 1 and 3,

d) Model fit: evaluated using the Akaike Information Criterion
(AIC), e) Model explanatory power: assessed via Nagelkerke’s R?
(R®N), and f) OR estimation: reported with 95% confidence
intervals.

Three independent models were developed, one for each protocol
(sEMG, laryngeal CA, and voice), incorporating the clinical
variables with statistically significant differences (p < 0.005) and
the reduced latent variables from each protocol. Finally, the most
relevant variables were integrated into a global model designed to
discriminate between healthy individuals and those with NOD.
Statistical analysis was performed using Jamovi® software,
version 2.2 (The Jamovi Project, 2022).

The study was approved by the Health Research Ethics
Committee of Universidad Pontificia Bolivariana (Act No. 7, June
1, 2017), the Ethics Committee of Fundacién Hospitalaria San
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Vicente Patl (Act No. 35-2018, December 21, 2018), and the
Ethics Committee of Clinica Somer (Act No. 01-2019, February
8, 2019). Written informed consent was obtained from all
participants.

RESULTS

Four major sets of variables were obtained for both groups: 158
clinical variables derived from the CSE (25 sociodemographic
and background characteristics, 38 swallowing features and
dysphagia symptoms, 48 physical examination findings, and 47
clinical findings from the oral motor tests using different
consistencies and volumes); 2,464 quantitative variables from
Protocol 1 (eleven features extracted from SEMG signals across
muscle groups, consistencies, and volumes); 1,491 quantitative
variables from Protocol 2 (eight features from sSEMG signals and
two from CA); and 1,125 paired variables from Protocol 3 (five
grouped vocal features subdivided into 19 sub characteristics,
assessed before and after swallowing different consistencies and
volumes).

When comparing cases and controls, 88 out of the 158 clinical
variables (55.7%) showed statistically significant differences (p <
0.005) and were included in the construction of the logistic
regression model (see Supplementary Table S1). Figure 4
summarizes the process of identifying, reducing, and distributing
the clinical variables.

In Protocol 1, 39.2% (966/2,464) of the quantitative variables
exhibited statistically significant differences between groups (p <
0.05). Based on this outcome, 44 PCA models were developed
and organized in blocks according to the extracted features and
statistical properties. This dimensionality reduction process
yielded 36 latent variables (from 966 significant variables)
representative of the main SEMG signal dimensions. The latent
sEMG variables from Protocol 1, along with their
characterization, are provided in Supplementary Table S2.

In Protocol 2, 53.9% (804/1,491) of the quantitative variables
showed significant differences between cases and controls. To
reduce this set, 39 PCA models were implemented, structured by
extracted features, statistical parameters, and sensor type (SEMG
or laryngeal CA). This procedure reduced the 804 significant
variables to 143 latent variables: 50.3% (72/143) derived from CA
signals and 49.7% (71/143) from sEMG signals. The latent
variables for laryngeal CA and sSEMG from Protocol 2, along with
their characterization, are detailed in Supplementary Tables S3
and S4.
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158 Clinical Variables

Signs on physical examination
Oral Motor Test
Swallowing characteristics and symptoms
Sociodemographic data and medical history

A4
| Case/Control Comparison |

[
v v

| Qualitative Variables | | Quantitative Variables |

Chi-square test Mann-Whitney U test
Fisher’'s exact test Welch’s t-test

| Student’s t-test

Variables with statistically significant
differences p <0,005

\ 4

88 Clinical Variables

Figure 4. Number of clinical variables to differentiate people with neurogenic
oropharyngeal dysphagia from healthy people.

In Protocol 3, 12.1% (136/1,125) of the paired variables showed
statistically significant differences before and after swallowing in
both groups. To reduce this set, 17 PCA models were performed,
organized into blocks based on the five main vocal features—
phonation, connected speech, sustained vowel, diadochokinesis,
and prosody, along with their respective sub-characteristics. This
process reduced the 136 significant paired variables to 61 latent
variables, distributed as follows: phonation, 39.3% (24/61);
connected speech, 37.7% (23/61); and sustained vowel, 23%
(14/61). The latent voice variables derived from Protocol 3, along
with their characterization, are detailed in Supplementary Table
Ss.

Figure 5 summarizes the comparison, identification, and
dimensionality reduction process for the set of quantitative
variables obtained from the three non-invasive biosignal
acquisition protocols used in this study.
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2464 sEMG variables from
protocol 1

l

Comparison of sSEMG
signals between
cases/controls

Mann-Whitney U test
Student’s t-test

1491 sEMG and CA variables from
protocol 2

|

Comparison of sEMG and
CA signals between
cases/controls

Mann—Whitney U test
Student's t-test

1125 Paired voice variables from
protocol 3

l

Comparison of voice
signals before and after
swallowing between
cases/controls

Student’s t-test

Welch’s t-test

Welch’s t-test

Wilcoxon Test

y

966 variables with statistically significant

v 804 variables with statistically significant Y
differences (p<0.05)

136 paired variables with statistically

differences (p<0.05)

)

significant differences (p<0.05)

l Principal Component Analysis. l

Principal Component Analysis.
Criterion: sphericity test <0.001 and

Criterion: sphericity test <0.001 and overall
KMO 20.800

Principal Component Analysis.
Criterion: sphericity test <0.001 and

overall KMO 20.800

}

overall KMO 20.800

! |

143 latent variables from protocol 2 |

A4

36 latent SEMG variables !
from protocol 1 | 72 CA variables | |

1 61 paired latent voice variables
71 sEMG variables | from protocol 3

Figure 5. Summary of variable reduction from three protocols for electromyography, laryngeal accelerometry, and voice signals among people with neurogenic

oropharyngeal dysphagia and healthy subjects.

sEMG: surface electromyography. KMO: Kaiser-Meyer-Olkin test. CA: cervical accelerometry.

The 88 clinical variables identified through the comparison
process (p-value < 0.005), together with the 36 latent variables
from Protocol 1, 143 from Protocol 2, and 61 from Protocol 3 (all
derived through PCA-based dimensionality reduction), were
included in the initial construction phase of three independent
binary logistic regression models. At this stage, clinical variables
were integrated with the biosignal features of each protocol
separately (Figure 6).

Subsequently, the clinical and biosignal variables from each
protocol that were retained in the initial models were selected and
incorporated into a final integrative model. This model included
variables: five clinical (two related to respiratory history and three
from the physical examination, including one variable from the
oral motor test involving solid consistency—cracker) and four
biosignal variables (two from voice—Protocol 3, one from
laryngeal CA—Protocol 2, and one from sEMG—Protocol 1).
The final model achieved an AIC of 51.7 and a Nagelkerke R? of
0.906, with no evidence of collinearity between the selected
variables (Table 2).

The final algorithm shows that the following variables
collectively explain 90.6% of the probability of NOD: respiratory
comorbidity, intubation longer than one week, impaired lateral lip
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movement, multiple swallows when ingesting a cracker-type
consistency, changes in BMI, a zero-crossings feature from the
SsEMG signal in the left infrahyoid region while swallowing 20 ml
of water, a logarithmic detector feature in the mediolateral axis of
the laryngeal CA signal during 10 ml yogurt swallowing, a Bark
band energy feature in connected speech before swallowing, and
a first derivative feature in the phonation of the vowel "A" after
swallowing. This model successfully integrates clinical variables
with non-invasive swallowing biosignals, achieving high
explanatory capacity.
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Initial development phase for logistic regression models between clinical variables and signal data for each separate protocd

v

v

v

Model 1: Clinical and Latent Variables from

Model 2: Clinical and Latent Variables from

Model 3: Clinical and Latent Variables from

Protocol 1 Protocol 2 Protocol 3
Clinical Variables VIF p-value Clinical Variables VIF p-value Clinical Variables VIF p-value

Respiratory Comorbidity 114 0.07 Intubation longer tan a week? 131 0.04 Respiratory Comorbidity 14 0.02
Intubation longer tan a week? 1.25 0.02 Do you cough before you swallow? 1.45 0.03 Intubation longer tan a week? 1.48 0.009
Do you cough before you swallow? 1.25 0.01 Current loss of apetite 1.34 0.003 Current loss of apetite 1.28 0.02
Current loss of apetite 1.68 <0.001 Lingual fasciculations 1.39 0.007 Body Mass Index 1.96 0.003
Body Mass Index 1.27 0.02 Multiple swallows per bolus (cracker) 2.23 <0.001 Impaired lateral lip movement 1.78 <0.001
Impaired lateral lip movement 1.4 0.001 sEMG Variables from Protocol 2 VIF P-value Lingual fasciculations 1.52 0.031

ingual fasciculations - - Y5_std_MYOP_LSH: Standard deviation of the ultiple swallows per bolus (cracker] . X
Lingual fasciculat 16 0.001 std_ | Multiple swallows per bol ki 1.6 0.003
Multiple swallows per bolus (cracker) 148  <0.001 myopulse percentage rate in the left suprahyoid 17 0.004 Cough (yogurt) 1.79 0.007

| during 5 ml t intake.
sEMG Variables from Protocol 1 VIF P-value musclegroup during > mi yogurt intake SEMG Variables from Protocol 3 VIF P-value
A20_max_ZC_LIH: Maximum number of zero Z_mean_!ogESI: Mear\ Véll;e (,)f thellogfarthmlc | 135 0.005 Arti BBE d PRE: dard deviation i
crossings in the left infrahyoid muscle group 153 0.005 etector |n21 elsuperll'or-m elrllor axis of laryngea . . rti_con_BBE_on3_st L ASFan ar evlatlonl in o 0001
during 20 ml water intake. movement during saliva swallowing . Bark energy bands during continuous speech prior . <0.
) Y10_std_log_ML: Standard deviation of the to swallowing.

A5_mean_ZC_RIH: Mean number of zero crossings . . . . .
! N ) X X logarithmic detector in the medial-lateral axis of

in the rlght infrahyoid muscle group during 5 ml 1.52 0.02 laryngeal movement during swallowing of 10 ml of 173 0.002 Phonation_DFO_kurt_A_POS: Kurtosis of the first
water intake. yogurt. derivative of the fundamental frequency during 141 0.005
A10_std_Sample_ent_LSH: Standard deviation of Y20_mean_DASDV_AP: Mean value of the sustained phonation of the vowel 'A" after : ’
sample entropy in the left infrahyoid muscle group 17 0.002 absolute standard deviation difference in the 145 0.02 swallowing.
during 10 ml water intake. Znterior—poslterior axis olfllaryngeal movement : ! AlC 63.7

uring 20 ml yogurt swallowing.
AIC 793 g yog g R% 0.893
R’ 0.837 Alc 74.7
R%n 0.855

|

Initial phase: Integration into a single logistic regression model of
clinical variables and latent variables from all three protocols combined

Figure 6. Summary of the initial development of three logistic regression models that included clinical variables and non-invasive swallowing signal variables to identify neurogenic oropharyngeal dysphagia.

p: p-value. VIF: variance inflation factor. AIC: Akaike information criterion. R?N: Nagelkerke's R2.
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Table 2. Final integrated model combining clinical variables with non-invasive swallowing signals to differentiate healthy individuals from patients

with neurogenic oropharyngeal dysphagia.

Predictor

Respiratory Comorbidity

Intubation longer than a week

Impaired lateral lip movement

Multiple swallows when eating a cracker
Body Mass Index

pl_A20 max ZC LIH: Maximum number of zero crossings in the left infrahyoid muscle group
during 20 ml water intake in protocol 1.

p2 Y10 std log ML: Standard deviation of the logarithmic detector in the medial-lateral axis of
laryngeal movement during swallowing of 10 ml of yogurt in protocol 2.

p3_Arti con BBE on3 std PRE: Standard deviation in Bark energy bands during continuous

speech prior to swallowing consistencies in protocol 3.

p3_Phonation DFO kurt A POS: Kurtosis of the first derivative of pitch during phonation of

the vowel 'A' after swallowing consistencies in protocol 3
Model Fit Measures

Model

Clinical variables plus signals

OR (CI 95%) p-value  VIF
479.19 (2.29 —100075.74) 0.024 1.67
3353.64 (8.94 — 1.26 ) 0.007 1.89
57.96 (2.87 — 1168.94) 0.008 1.61
27.74 (2.74 — 280.10) 0.005 1.37
0.75 (0.58 — 0.98) 0.038 1.95
1.09 (1.01 - 1.18) 0.020 2.23
1.55%14(1.4225 — 0) 0.014 1.67
0 (2.640-°—0.06) <.001 2.06
0.91 (0.86 — 0.96) 0.003 1.87

AIC Ry

51.7 0.906

OR: odds ratio. CI 95: confidence interval at 95%. VIF: variance inflation factor. e: exponent. AIC: Akaike information criterion. R?N: Nagelkerke’s R2.

DISCUSSION

This study aimed to develop an algorithm capable of
distinguishing individuals without dysphagia from patients with
neurogenic oropharyngeal dysphagia (NOD). To achieve this, a
multimodal model was built by integrating a wide range of clinical
variables and features extracted from surface electromyography
(sEMGQG), laryngeal accelerometry (CA), and voice quality, both
before and after swallowing various food consistencies and
volumes. The result was an original and pioneering model that, by
combining five clinical variables and four biosignal features
(obtained from sEMG across four muscle groups, laryngeal CA,
and vocal characteristics), enables the distinction between
individuals without dysphagia and those with NOD.

Model development was based on binary logistic regression
incorporating both clinical and biosignal variables, and it required
an extensive comparison and reduction process applied to a large
number of clinical and biosignal features in both the case and
control groups. This approach, novel in the multimodal analysis
of swallowing, allowed for identifying variables capable of
distinguishing healthy individuals from those with NOD. The
features extracted from sEMG, CA, and voice were quantitative
and derived through non-invasive methods during the swallowing
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of foods with varying textures and volumes, making this
procedure a clear example of the advantages offered by
computational deglutition (Sejdic et al., 2019).

Notably, clinical variables alone, as well as several individual
features from sEMG, laryngeal CA, and voice (before and after
swallowing), showed the capacity to differentiate patients with
NOD from healthy controls. However, by applying
dimensionality reduction techniques to identify the most relevant
variables and subsequently integrating them through binary
logistic regression models (combining clinical and biosignal
variables), the overall classification and explanation of NOD were
significantly enhanced. These results demonstrate the feasibility
of developing models that combine clinical data and biosignals
through multimodal analysis.

The final model indicates that the variables best predicting the
presence of NOD (with an accuracy of 90.6%) include two
medical history items obtained during anamnesis, three findings
from physical examination, one SEMG signal feature in the
infrahyoid region during water swallowing, one feature from the
laryngeal CA signal in the mediolateral axis during yogurt
swallowing, and two changes in subfeatures of the voice—
specifically in continuous articulation and phonation of the vowel
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"A." Interestingly, the final model did not include any direct
symptoms of dysphagia, but was constructed based on the
presence of comorbidities, clinical history, physical examination,
and the objective quantification of three biosignals easily
obtainable in a clinical setting. Therefore, this approach supports
practical and straightforward implementation in professional
practice.

It is noteworthy that, to date, no other studies have integrated sets
of clinical and biosignal variables using binary logistic regression
in dysphagia in general, nor in NOD specifically. In a previous
study, Lee et al. (2009) used neural networks to analyze data from
cervical accelerometry, mechanomyography, and nasal airflow to
segment the swallowing process. However, their research did not
include clinical variables, nor did it attempt to classify patients
with or without NOD. Similarly, Chien and colleagues (Hsu et al.,
2013) developed a system to assess dysphagia severity in 23
patients with myasthenia gravis by capturing swallowing sounds
via a microphone and electromyography. Nonetheless, their study
was limited to water swallowing, used SEMG electrodes only on
the mentum and laryngeal regions, and did not integrate any
clinical variables into the system.

Our research team had previously reported an explanatory clinical
model based on binary logistic regression, developed by
combining nine clinical variables and demonstrating an ability to
predict the probability of NOD with 78.8% accuracy (Escudero
etal.,, 2024). That model included the following variables:
presence of respiratory comorbidity, intubation lasting more than
one week, coughing before swallowing, current loss of appetite,
changes in body mass index (BMI), impaired orofacial praxis
(specifically lateral lip movement), presence of lingual
fasciculations, need for multiple swallows when ingesting hard
and dry consistencies, and coughing when swallowing thickened
liquids. Five of these variables are shared with the current model:
a history of respiratory comorbidity, prolonged intubation,
impaired orofacial praxis, changes in body mass index (BMI), and
multiple swallows for solid consistencies. Thus, by incorporating
biosignals, the current model improved its explanatory capacity
by 11.8%. This work highlights the importance of integrating non-
invasive, routine instrumental variables with clinical data and
developing new advances in understanding the complex
phenomenon of dysphagia.

CONCLUSIONS

This study presents, for the first time, a model capable of
predicting the presence of NOD with 90.6% accuracy by
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integrating five clinical variables and four biosignals. These
findings demonstrate that the application of computational
deglutition (Sejdic etal., 2019), utilizing non-invasive and
quantitative approaches such as sSEMG, laryngeal accelerometry,
and voice analysis, is enhanced and complemented when
combined with clinical variables routinely collected in healthcare
practice. Furthermore, the results support the feasibility of
implementing models, flowcharts, or algorithms that improve the
classification and characterization of patients with NOD in
clinical settings.

In the medium term, the aim is to develop additional explanatory
models to distinguish between progressive and non-progressive
neurogenic causes of dysphagia, as well as to assess the
longitudinal behavior of biosignals and their predictive value for
detecting improvement or deterioration in cases of functional
oropharyngeal dysphagia.
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